首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1252篇
  免费   108篇
  国内免费   102篇
  2024年   1篇
  2023年   27篇
  2022年   11篇
  2021年   43篇
  2020年   59篇
  2019年   42篇
  2018年   41篇
  2017年   44篇
  2016年   51篇
  2015年   47篇
  2014年   65篇
  2013年   69篇
  2012年   41篇
  2011年   39篇
  2010年   40篇
  2009年   47篇
  2008年   57篇
  2007年   69篇
  2006年   55篇
  2005年   55篇
  2004年   61篇
  2003年   53篇
  2002年   44篇
  2001年   44篇
  2000年   37篇
  1999年   40篇
  1998年   33篇
  1997年   23篇
  1996年   27篇
  1995年   22篇
  1994年   24篇
  1993年   21篇
  1992年   13篇
  1991年   17篇
  1990年   21篇
  1989年   17篇
  1988年   7篇
  1987年   12篇
  1986年   6篇
  1985年   10篇
  1984年   6篇
  1983年   4篇
  1982年   3篇
  1981年   5篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有1462条查询结果,搜索用时 15 毫秒
91.
92.
93.
Recent studies have detected phylogenetic signals in pathogen–host networks for both soil‐borne and leaf‐infecting fungi, suggesting that pathogenic fungi may track or coevolve with their preferred hosts. However, a phylogenetically concordant relationship between multiple hosts and multiple fungi in has rarely been investigated. Using next‐generation high‐throughput DNA sequencing techniques, we analyzed fungal taxa associated with diseased leaves, rotten seeds, and infected seedlings of subtropical trees. We compared the topologies of the phylogenetic trees of the soil and foliar fungi based on the internal transcribed spacer (ITS) region with the phylogeny of host tree species based on matK, rbcL, atpB, and 5.8S genes. We identified 37 foliar and 103 soil pathogenic fungi belonging to the Ascomycota and Basidiomycota phyla and detected significantly nonrandom host–fungus combinations, which clustered on both the fungus phylogeny and the host phylogeny. The explicit evidence of congruent phylogenies between tree hosts and their potential fungal pathogens suggests either diffuse coevolution among the plant–fungal interaction networks or that the distribution of fungal species tracked spatially associated hosts with phylogenetically conserved traits and habitat preferences. Phylogenetic conservatism in plant–fungal interactions within a local community promotes host and parasite specificity, which is integral to the important role of fungi in promoting species coexistence and maintaining biodiversity of forest communities.  相似文献   
94.
Understanding the mechanisms generating species distributions remains a challenge, especially in hyperdiverse tropical forests. We evaluated the role of rainfall variation, soil gradients and herbivory on seedling mortality, and how variation in seedling performance along these gradients contributes to habitat specialisation. In a 4‐year experiment, replicated at the two extremes of the Amazon basin, we reciprocally transplanted 4638 tree seedlings of 41 habitat‐specialist species from seven phylogenetic lineages among the three most important forest habitats of lowland Amazonia. Rainfall variation, flooding and soil gradients strongly influenced seedling mortality, whereas herbivory had negligible impact. Seedling mortality varied strongly among habitats, consistent with predictions for habitat specialists in most lineages. This suggests that seedling performance is a primary determinant of the habitat associations of adult trees across Amazonia. It further suggests that tree diversity, currently mostly harboured in terra firme forests, may be strongly impacted by the predicted climate changes in Amazonia.  相似文献   
95.
Ecologists have limited understanding of how geographic variation in forest biomass arises from differences in growth and mortality at continental to global scales. Using forest inventories from across North America, we partitioned continental‐scale variation in biomass growth and mortality rates of 49 tree species groups into (1) species‐independent spatial effects and (2) inherent differences in demographic performance among species. Spatial factors that were separable from species composition explained 83% and 51% of the respective variation in growth and mortality. Moderate additional variation in mortality (26%) was attributable to differences in species composition. Age‐dependent biomass models showed that variation in forest biomass can be explained primarily by spatial gradients in growth that were unrelated to species composition. Species‐dependent patterns of mortality explained additional variation in biomass, with forests supporting less biomass when dominated by species that are highly susceptible to competition (e.g. Populus spp.) or to biotic disturbances (e.g. Abies balsamea).  相似文献   
96.
The aim of the study was to estimate the ability of ten tree and bush species to tolerate and accumulate Cd, Cu, Pb, Zn, and As species [As(III), As(V), and total organic arsenic] in industrial sewage sludge extremely contaminated with arsenic (almost 27.5 g kg?1) in a pot experiment. The premise being that it will then be possible to select the most promising tree/bush species, able to grow in the vicinity of dams where sewage sludge/flotation tailings are used as landfill. Six of the ten tested tree species were able to grow on the sludge. The highest content of total As was observed in Betula pendula roots (30.0 ± 1.3 mg kg?1 DW), where the dominant As species was the toxic As(V). The highest biomass of Quercus Q1 robur (77.3 § 2.6 g) and Acer platanoides (76.0 § 4.9 g) was observed. A proper planting of selected tree species that are able to thrive on sewage sludge/flotation tailings could be an interesting and promising way to protect dams. By utilizing differences in their root systems and water needs, we will be able to reduce the risk of fatal environmental disasters.  相似文献   
97.
Large‐diameter, tall‐stature, and big‐crown trees are the main stand structures of forests, generally contributing a large fraction of aboveground biomass, and hence play an important role in climate change mitigation strategies. Here, we hypothesized that the effects of large‐diameter, tall‐stature, and big‐crown trees overrule the effects of species richness and remaining trees attributes on aboveground biomass in tropical forests (i.e., we term the “big‐sized trees hypothesis”). Specifically, we assessed the importance of: (a) the “top 1% big‐sized trees effect” relative to species richness; (b) the “99% remaining trees effect” relative to species richness; and (c) the “top 1% big‐sized trees effect” relative to the “99% remaining trees effect” and species richness on aboveground biomass. Using environmental factor and forest inventory datasets from 712 tropical forest plots in Hainan Island of southern China, we tested several structural equation models for disentangling the relative effects of big‐sized trees, remaining trees attributes, and species richness on aboveground biomass, while considering for the full (indirect effects only) and partial (direct and indirect effects) mediation effects of climatic and soil conditions, as well as interactions between species richness and trees attributes. We found that top 1% big‐sized trees attributes strongly increased aboveground biomass (i.e., explained 55%–70% of the accounted variation) compared to species richness (2%–18%) and 99% remaining trees attributes (6%–10%). In addition, species richness increased aboveground biomass indirectly via increasing big‐sized trees but via decreasing remaining trees. Hence, we show that the “big‐sized trees effect” overrides the effects of remaining trees attributes and species richness on aboveground biomass in tropical forests. This study also indicates that big‐sized trees may be more susceptible to atmospheric drought. We argue that the effects of big‐sized trees on species richness and aboveground biomass should be tested for better understanding of the ecological mechanisms underlying forest functioning.  相似文献   
98.
99.
100.
The fish genus Poeciliopsis constitutes a valuable research system for evolutionary ecology, whose phylogenetic relationships have not been fully elucidated. We conducted a multilocus phylogenetic study of the genus based on seven nuclear and two mitochondrial loci with a thorough set of analytical approaches, that is, concatenated (also known as super‐matrix), species trees, and phylogenetic networks. Although several relationships remain unresolved, the overall results uncovered phylogenetic affinities among several members of this genus. A population previously considered of undetermined taxonomic status could be unequivocally assigned to P. scarlli; revealing a relatively recent dispersal event across the Trans‐Mexican Volcanic Belt (TMVB) or Pacific Ocean, which constitute a strong barrier to north–south dispersal of many terrestrial and freshwater taxa. The closest relatives of P. balsas, a species distributed south of the TMVB, are distributed in the north; representing an additional north–south split in the genus. An undescribed species of Poeciliopsis, with a highly restricted distribution (i.e., a short stretch of the Rio Concepcion; just south of the US‐Mexico border), falls within the Leptorhaphis species complex. Our results are inconsistent with the hypothesis that this species originated by “breakdown” of an asexual hybrid lineage. On the other hand, network analyses suggest one or more possible cases of reticulation within the genus that require further evaluation with genome‐wide marker representation and additional analytical tools. The most strongly supported case of reticulation occurred within the subgenus Aulophallus (restricted to Central America), and implies a hybrid origin for P. retropinna (i.e., between P. paucimaculata and P. elongata). We consider that P. balsas and P. new species are of conservation concern.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号